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CRISPR-based adaptive immune systems
Michael P Terns1,2 and Rebecca M Terns1
CRISPR–Cas systems are recently discovered, RNA-based

immune systems that control invasions of viruses and plasmids

in archaea and bacteria. Prokaryotes with CRISPR–Cas

immune systems capture short invader sequences within the

CRISPR loci in their genomes, and small RNAs produced from

the CRISPR loci (CRISPR (cr)RNAs) guide Cas proteins to

recognize and degrade (or otherwise silence) the invading

nucleic acids. There are multiple variations of the pathway

found among prokaryotes, each mediated by largely distinct

components and mechanisms that we are only beginning to

delineate. Here we will review our current understanding of the

remarkable CRISPR–Cas pathways with particular attention to

studies relevant to systems found in the archaea.

Addresses
1 Department of Biochemistry and Molecular Biology, University of

Georgia, Athens, GA, USA
2 Department of Genetics, University of Georgia, Athens, GA, USA

Corresponding authors: Terns, Michael P (mterns@bmb.uga.edu) and

Terns, Rebecca M (rterns@bmb.uga.edu)

Current Opinion in Microbiology 2011, 14:321–327

This review comes from a themed issue on

Archaea

Edited by John Reeve and Christa Schleper

Available online 29th April 2011

1369-5274/$ – see front matter

# 2011 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.mib.2011.03.005

Introduction
Small RNA-based defense systems that provide adaptive,

heritable immunity against viruses, plasmids, and other

mobile genetic elements have recently been discovered

in archaea and bacteria. The RNA and protein com-

ponents of these immune systems arise from the CRISPR

(clustered regularly interspaced short palindromic repeat)

and Cas (CRISPR-associated) genes, respectively. The

CRISPR–Cas pathway functions in three phases — adap-

tation of CRISPRs to invaders, crRNA biogenesis, and

invader silencing (Figure 1). It appears that nearly all

archaea and approximately half of bacteria are equipped

with CRISPR–Cas systems [1–3], which have been shown

to provide protection from viral predation and plasmid

invasion in both laboratory settings [4,5,6��,7�,8�,9] and

natural environments [10–13].

The discovery of these prokaryotic immune systems has

generated considerable excitement, and several excellent
www.sciencedirect.com
reviews are available [2,14–20]. Here, we describe the

components and mechanisms of CRISPR-mediated

immunity with emphasis on the systems found in archaea.

Advances in understanding the three key steps in the

CRISPR–Cas pathway are described, including important

contributions from studies done in archaea. Finally, we

summarize the significant gaps that remain in our knowl-

edge of the molecular mechanisms of CRISPR–Cas-

based invader defense.

CRISPRs: genetic memory banks of past
invasions and source of small invader-
targeting RNAs
The hallmark feature of the CRISPR–Cas system is the

CRISPR locus (see Figure 1). CRISPR loci are character-

ized by short, direct repeat sequences (typically 30–40 nts)

that separate variable sequences of similar size. There

are 12 families of CRISPR repeats based on sequence

and predicted secondary structure [21]. The variable

sequences (called spacers or guide sequences) are derived

from viruses, plasmids, and other invaders [17,22–25] and,

remarkably, confer immunity against the corresponding

invader [4,5,6��,7�,8�,9,26��]. CRISPR locus transcripts are

processed to generate small crRNAs that contain individ-

ual invader-derived sequences and target invading nucleic

acids for silencing ([5,9,26��,27,28�], and see Figure 1).

Thus, CRISPRs capture and store fragments of invader

sequence and give rise to small RNAs that impart heritable

immunity against the invaders.

Cas proteins: hubs of CRISPR–Cas diversity
The cas genes are very tightly linked to CRISPR loci,

both physically (location within genomes) and evolutio-

narily (cosegregation among genomes), consistent with

the cofunction of crRNAs and Cas proteins. Over 45 cas

gene families have been identified, but a given organism

only possesses a subset of these [2,29–31]. A few ‘core’ cas

genes (cas1–6) are present in a wide array of organisms

[2,29–31]; however, most organisms have only some of

these six genes, and only cas1 and cas2 appear to be

universal (Figure 2). In a given organism, the core cas

genes are supplemented by one or more of the nine sets of

subtype-specific cas genes (Figure 2). These sets of two to

six genes cosegregate among genomes as distinct cas gene

modules. Eight of the modules are named for a proto-

typical organism where they are the only additional cas

genes found [29]. For example, the cas subtype Aeropyrum
pernix or csa genes are a set of six noncore cas genes found

together in A. pernix as well as other organisms. The other

Cas subtypes include: Thermotoga (cst), Haloarcula (csh),

Mycobacterium (csm), Desulfovibrio (csd), Yersinia (csy),

Escherichia (cse), and Neisseria (csn). Each of these eight
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Overview of the CRISPR–Cas invader defense pathway. In the

adaptation phase, a short fragment of foreign DNA (protospacer) is

acquired from the invader and integrated into the host CRISPR locus

adjacent to the leader. Protospacer adjacent motifs (PAMs) are found

near invader sequences selected for CRISPR integration. The CRISPR

locus consists of short direct repeat sequences (black) that separate

similarly sized, invader-derived sequences (multiple colors). In the

biogenesis phase of the pathway, CRISPR locus transcripts are

processed to release individual mature crRNAs (each targeting a

different sequence). Mature crRNAs typically retain some of the repeat

sequence, which is thought to provide a recognizable signature of the

crRNAs. In the silencing phase, crRNA–Cas protein effector complexes

recognize foreign DNA or RNA through basepairing of the crRNA. The

Cmr and Csn systems affect cleavage of target RNA and DNA,

respectively. PAMs provide important auxiliary signals for the

recognition of invaders for some DNA-targeting systems.
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Combinations of Cas proteins create diverse CRISPR–Cas systems.

Cas1–6 are core Cas proteins found in many and diverse organisms. In

addition, there are eight primary modules of subtype-specific Cas proteins

(consisting of two to six proteins each), and the auxiliary Cmr module. A

typical CRISPR–Cas system is composed of the nearly universal Cas1 and

Cas2 proteins (yellow), a specific combination of the other core Cas

proteins (green) and a set of subtype-specific Cas proteins (blue). A given

organism may possess more than one CRISPR–Cas system, and may also

have the Cmr module (purple). See Haft et al. [29].
modules is associated with particular subsets of the core

cas genes [18,21]. The ninth module, cas module RAMP

(cmr), is only found in conjunction with other subtype-

specific modules [29,31,32]. As more genomes are

sequenced, new cas gene modules continue to emerge

and relationships between components of the modules

are recognized [2]. The limited available information

confirms that cas genes are essential for the function of

CRISPR–Cas systems [4,5,6��,33��,34].

The Csa, Cst, Csh, and Csm subtype Cas systems are

common in archaea [2,29,31,32]. All of the Cas systems
Current Opinion in Microbiology 2011, 14:321–327
are found in bacteria with the exception of Csa, which

may be exclusive to archaea. In general, archaea tend to

have multiple (or mixed) Cas systems. The diversity of

Cas systems found among prokaryotes is illustrated in the

cas genes present in some of the currently studied model

organisms (Table 1). It is thought that the Cas systems are

disseminated by horizontal gene transfer [32,35–38] with

the result that closely related species can have completely

different systems and highly divergent organisms can

have very similar Cas systems.

The diversity of Cas proteins that populate CRISPR–Cas

systems would suggest that there are multiple variations

of the CRISPR–Cas pathway to be delineated and avail-

able information substantiates the expected diversity in

the pathways (for example in the targeting of DNA versus

RNA, see below). Cas protein sequences indicate poten-

tial functions as nucleases, helicases, RNA binding

proteins, etc. [29,31]; however, most of the proteins have
www.sciencedirect.com
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Table 1

Core and subtype-specific Cas protein genes in model organisms being employed to understand CRISPR–Cas systems. Information from

[1] except for S. thermophilus [15]. Cas nomenclature is from Haft et al. [29].

Organism Core Subtype-specific Total#

Archaea

Pyrococcus furiosus (DSM 3638) Cas 1, 2, 3, 4, 5, 6 Csa, Cst, Cmr 27

Sulfolobus sulfataricus (P2) Cas 1, 2, 3, 4, 5, 6 Csa, Csm, Cmr 53

Bacteria

Escherichia coli (K-12) Cas 1, 2, 3 Cse 8

Psuedomonas aeruginosa (PA14) Cas 1, 2/3 fusion Csy 6

Staphylococcus epidermidis (RP62a) Cas 1, 2, 6 Csm 8

Streptococcus thermophilus (DGCC7710) Cas 1, 2, 3, 6 Csn, Csm, Cse 25
not yet been biochemically characterized or assigned

functions in the pathways. Exceptions are described

below.

Three steps in the CRISPR–Cas invader
defense pathway
Cas proteins function in each of the three steps required

for CRISPR–Cas system function: firstly, adaptation of

CRISPRs; secondly, crRNA biogenesis; and thirdly, inva-

der silencing (Figure 1).

Adaptation: acquisition of new invader
sequences in the CRISPR loci
In adaptation, a copy or fragment of invading nucleic acid

termed a protospacer is generated and integrated into the

CRISPR locus (Figure 1). Protospacers are typically

inserted immediately adjacent to the leader sequence

at one end of the CRISPR ([4,10,15,24,25]; see

Figure 1) providing an approximately chronological

record of past infections. Arguably, adaptation is the most

unique and fascinating aspect of CRISPR–Cas biology,

but there is scant information regarding the molecular

mechanism.

Short (3–6 nt) sequence elements found adjacent to the

protospacer in the foreign nucleic acid, termed PAMs

[14,23,28�], are critical in the generation and/or integ-

ration of protospacers into CRISPR loci [4,6��,39]. The

PAM is presumably recognized by the adaptation machin-

ery. The trans-acting factors involved in novel spacer

acquisition remain largely unknown. A central role for

the universal Cas1 in invader DNA cleavage has been

suggested based on observed cleavage of dsDNA in vitro
[40]; however, Cas1 generates �80 bp DNA fragments

without a requirement for a flanking PAM. Compelling

genetic evidence implicates Csn2 (also called Cas7) in

acquisition in Streptococcus thermophilus [4,6��], suggesting

that subtype-specific Cas proteins may act with Cas1 in

adaptation. Moreover, at least in Escherichia coli, there is

evidence that Cas1 may function with non-Cas proteins

[41]. Mechanisms that limit the size of CRISPR arrays are

also now coming to light. Loss of CRISPR length appears

to occur via spontaneous homologous recombination be-

tween repeat sequences [7�,13,24,39].
www.sciencedirect.com
CRISPR RNA biogenesis
Biogenesis entails production of numerous individual

crRNAs from CRISPR locus transcripts ([5,9,26��,27,

28�,33��], and see Figure 1). ‘RNomic’ (RNA profiling)

studies of the small RNAs from two thermophilic archaea,

Archaeoglobus fulgidus and Sulfolobus solfataricus, revealed

that CRISPR loci were transcriptionally active and

yielded elaborately processed RNAs (before our under-

standing of CRISPR function) [42,43]. CRISPR loci are

predominantly transcribed from promoters located at the

leader ends [5,9,26��,27,28�,33��]. In most organisms ana-

lyzed thus far, CRISPR RNAs and Cas proteins are

constitutively expressed, consistent with an immune sys-

tem operating in ‘surveillance mode.’ However, there is

evidence that the expression of the CRISPR–Cas system

of specific E. coli strains is highly regulated [44] and that

in Thermus thermophilus, the presence of an invader trig-

gers elevations in the expression of CRISPR–Cas com-

ponents [45].

Considerable progress has been made identifying and

characterizing the primary crRNA biogenesis enzymes.

In several CRISPR–Cas systems, RAMP [31] superfamily

Cas proteins catalyze cleavage of CRISPR transcripts. For

example, the core Cas protein, Cas6 (from Pyrococcus
furiosus) [46,47,48�] and subtype-specific Cas proteins,

Cse3 (E. coli) [5] and Csy4 (Pseudomonas aeruginosa)

[49�] each recognize specific crRNA repeat sequences/

structures and catalyze a single-cut within each repeat

which liberates unit crRNAs (known as 1� processing

intermediates [47]) containing 50 and 30 flanking repeat-

derived sequences. The repeat sequences can be further

trimmed by unknown mechanisms [26��,33��]. An 8-

nucleotide, repeat-derived sequence is retained at the

50 ends of CRISPR RNAs from several archaea and

bacteria [5,9,26��,47] and likely plays an important role

as a crRNA ‘identity tag’ that serves as a Cas protein

binding site. Detailed biochemical and structural studies

of the pre-crRNA biogenesis enzymes have provided a

wealth of information on modes of cleavage and recog-

nition of both palindromic and unstructured CRISPR

repeat RNAs [46,47,48�,49�,50]. At the same time, a very

distinct mechanism of pre-crRNA biogenesis has been

found in bacteria with Csn subtype systems. A trans-
Current Opinion in Microbiology 2011, 14:321–327
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CRISPR–Cas systems of various prokaryotes include three coevolved

components: CRISPR repeats, CRISPR leaders, and associated Cas

proteins that function on discrete PAMs (protospacer adjacent elements)

present in the viruses and other mobile genetic elements that they

encounter. Known and predicted interactions between Cas proteins and

the host CRISPR RNA repeat sequences and leader DNA elements plus

invader PAMs are indicated (arrows). The specificity of these RNA–

protein and DNA–protein interactions likely contribute to the coevolution

of the four components.
acting RNA encoded within the CRISPR–Cas region

forms a duplex with the repeat sequence of the pre-

crRNA that is processed by RNase III and perhaps

Csn1 [33��].

Invader silencing
crRNAs are incorporated into effector complexes and

guide the complexes to invading nucleic acid (via base-

paired interactions). Silencing can occur at the DNA or

RNA level, and DNA targeting requires a PAM in the

DNA target for at least a subset of CRISPR–Cas systems

[4,5,6��,7�,8�,9,26��,51].

CRISPR–Cas systems that target invader DNA
Evidence indicates that Cse [5], Csn [6��], and Csm [9]

subtype systems directly or indirectly target the DNA of

invaders. Cleavage of invader DNA has been observed in

the case of the Csn system of S. thermophilus (but not yet

in the others; [9]). It is not known whether Cas systems

that target DNA employ silencing mechanisms other than

cleavage or can also target RNA (DNA targeting can

obscure identification of RNA targeting unless this is

accounted for in the experimental design (e.g. as in

[9])). The core Cas3 protein has been shown to be

essential for invader defense in vivo [5], to degrade

double-stranded DNA or RNA substrates in vitro [52],

and likely catalyzes DNA cleavage in several CRISPR–
Cas systems. By contrast, the predicted invader DNA

nuclease in the Csn system is Csn1 (also called Cas5 [6��]
or Cas9 [2]).

Systems to investigate silencing mechanisms in vivo have

recently been developed in the crenarchaea S. solfataricus
and Sulfolobus islandicus [7�,8�]. Results from studies in

which artificial invaders containing sequences recognized

by existing CRISPR spacers (i.e. protospacers) were

introduced into cells indicate that invaders are targeted

at the DNA level, though more work is required to

understand which CRISPR–Cas system(s) (Csa, Csm or

Cmr) are responsible for the observed activity and

whether the targeted DNA is cleaved.

For DNA targeting systems, it is critical that the pathway

not target the corresponding spacer in its own CRISPR

(which matches the protospacer in the invader). PAMs

provide one mechanism for distinction of self vs. nonself.

PAMs are critical for silencing by several systems

[6��,7�,51], and the PAM recognized by the CRISPR–
Cas system in the invader is not present in the repeat

sequence that flanks the potential target in the CRISPR.

Another mechanism described in Staphlococcus epidermi-
dis, which harbors a Csm-type system, is the requirement

for mismatches between the target DNA and the 50 repeat

tag sequences of the crRNA (which base-pair perfectly

with the potential target in the CRISPR) [53��]. Inter-

estingly, it appears that host sequences are occasionally

integrated into CRISPR loci resulting in self-targeting
Current Opinion in Microbiology 2011, 14:321–327
and cell death [54], and when self-targeting crRNAs were

expressed from a plasmid-encoded CRISPR locus, S.
solfataricus host cell survival was associated with homolo-

gous recombination that replaced the self-targeting

CRISPR locus with the homologous chromosomal copy

[8�].

Target RNA cleavage by the CRISPR–Cmr
complex
In P. furiosus, a complex comprising the six Cmr subtype

proteins and mature crRNAs cleaves complementary

RNAs (and not DNAs) [26��]. All six Cmr proteins are

important for the function of the complex and the

crRNAs direct cleavage 14 nucleotides upstream of their

30 ends [26��]. Approximately 70% of archaea and 30% of

bacteria with CRISPR–Cas systems have the Cmr

module in addition to other Cas systems [32] suggesting

that this RNA-targeting branch of the CRISPR–Cas

immune system plays an important role in the biological

warfare against viruses and other mobile genetic

elements.

Coevolving elements of a CRISPR–Cas system
Functional CRISPR–Cas systems include three coe-

volved components: the leader region of the CRISPR,

the CRISPR repeat, and the cas gene collection

(Figure 3). As described above, function of the system

very likely requires specific interactions between Cas

proteins and both the CRISPR leader (e.g. for integration

of new invader-derived sequences) and crRNA repeat
www.sciencedirect.com
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sequence (e.g. for crRNA biogenesis and cofunction in

silencing; Figure 3), and recent studies indicate that

these three elements cosegregate [14,21,28�,32,39]. Thus,

sets of core and subtype-specific cas genes are associated

with specific leader and repeat sequence families

[21,28�,29,32,55]. Likely for the same reason (required

Cas protein interaction), CRISPR–Cas systems are associ-

ated with specific PAM sequences in the targeted inva-

ders (Figure 3). Extensive analysis of the CRISPR–Cas

systems of Sulfolobus species, along with available viral

and plasmid sequences, demonstrates the relationships

between these elements [28�,32,55]. Not surprisingly, it

appears that the selective pressure of PAM recognition

and silencing by CRISPR–Cas systems is countered by

viral evolution of the targeted PAM sequences [51].

Conclusions
Evidence indicates that CRISPR–Cas immune systems

play a globally important biological role in host–parasite

interactions and collectively shape the evolution and

ecology of prokaryotes and viruses [10,11,13,56,57].

The early studies have revealed that there is a diverse

series of CRISPR–Cas pathways that function through

distinct components and mechanisms, which are dis-

persed throughout archaea and bacteria. Much of our still

very limited knowledge has come from studies with a

small set of model organisms that collectively do not

encompass the known CRISPR–Cas modules, and further

investigation in other organisms will help address this

gap. In the near future, the concerted effort of numerous

research groups is expected to provide answers to funda-

mental questions such as how novel protospacers are

acquired from invaders and integrated into CRISPRs,

what constitutes functional crRNAs and how they are

generated, and how silencing is achieved for each of the

CRISPR–Cas pathways, and should illuminate the mol-

ecular mechanisms governing the astonishing CRISPR–
Cas-mediated prokaryotic immune pathways.
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