

Bacterial chemotaxis as a model for systems biology

Victor Sourjik

Max Planck Institute for terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany

Systems biology: Biology of cellular networks

Proteins and genes are organized in networks: How can we understand the operation of networks?

Systems biology: Biology of cellular networks

Proteins and genes are organized in networks: How can we understand the operation of networks?

Quantitative experiments

Modeling / Simulation

Properties of cellular networks

Network analysis:

- Network connectivity
- Real-time dynamics and signal processing
- Spatial organization and assembly
- Robustness to perturbations
- Regulation and micorevolution

Model systems:

E. coli

- Chemotaxis and motility
- Two-component sensors
- Sugar transport network
- Chaperone network
- Min system
- S. cerevisiae •
- Mating pathway

E. coli chemotaxis as a model for simple behaviour

Adapted cells (no gradient)

Random walk

Berg & Brown, Nature, 1972

Vladimirov et al., PLoS Comp Biol, 2008; 2010

Direction-dependent adjustment of tumbling probability Temporal comparison as optimal strategy for bacteria Berg & Purcell, Biophys J, 1977

E. coli chemotaxis as a model for signalling

Turner & Berg, 2000

E. coli chemotaxis as a model for signalling

E. coli chemotaxis as a model for signalling

Mapping network interactions by FRET

Kentner & Sourjik, Mol Syst Biol 2009 Kentner & Sourjik, Annu Rev Microbiol 2010

Studying network dynamics by FRET

Dose-response relationship in chemotaxis

~20-30 fold signal amplification by the cluster

Fractional change in receptor occupancy

Where does this amplification come from?

Sourjik & Berg, PNAS, 2002

Signal amplification in receptor clusters

Maddock & Shapiro, Science, 1993 Sourjik & Berg, Mol Microbiol, 2000 Briegel et al., Mol Microbiol, 2009

Bray, Science, 20001

Sensitivity to small stimuli ~ N

Sourjik & Berg, Nature, 2004; Mello & Tu, PNAS, 2005; Keymer et al., PNAS, 2006

Integration of chemotactic stimuli

Multiple gradients

Signal integration: Net response is determined by the net energy change due to ligand binding $\Sigma\delta(\Delta f_i)$

Neumann et al., EMBO J, 2010; Kalinin et al., J Bacteriol, 2010; Neumann et al., PNAS, 2012; Yang & Sourjik, Mol Microbiol, 2012

Mapping complex stability and protein mobility by FRAP

Schulmeister et al., PNAS, 2008 Schulmeister et al., BMC Microbiol, 2011

Application of FRET and FRAP to study other cellular networks in bacteria

•Assembly, dynamics and regulation of flagellar motor Li & Sourjik., Mol Microbiol, 2011; Böhm et al., Cell, 2010; Zarbiv et al., J Mol Biol, 2012 Press et al., PLoS Pathog, 2013 •Assembly and dynamics of receptor clusters Thiem et al., EMBO J, 2007; Schulmeister et al., PNAS, 2008; Schulmeister et al., BMC Microbiol, 2011 Severe denaturation Aggregation Unfolding by of the protein Substrate processing by the chaperone ClpX network Recruitment of sHsp Kumar & Sourjik, Mol Microbiol, 2012; Seyffer et al., NSMB, 2012 Degradation of stubbornly unfolded client substrates •Secretion through the Sec system Recruitment of Hsp70 Unfolding by by ClpXP ClpB Kuhn et al. Traffic. 2011 Moderate denaturation •Size-dependence of protein mobility of the protein Kumar et al., Biophys J, 2010 Re-folded Folding by HtpG protein •Network of two-component sensors (TCS) Sommer et al., PLoS One, 2013; Sommer et al., in preparation •Network of sugar transporters Grosse et al., in preparation

Robustness as a fundamental property of both designed and evolved systems

Kitano, 2004 Carlson & Doyle, 2002 Yi et al., 2000 Barkai & Leibler, 1997

Stochastic variations in protein levels (gene expression noise)

Robustness against gene expression noise

Variable gene expression across population

= gene expression noise

Robust output

Robustness against gene expression noise

Noise compensation mechanisms?

= gene expression noise

Noise compensation mechanisms

Coupled gene expression
 Opposing enzymatic activities
 => Output is robust against correlated transcriptional noise

Steady-state output is robust against co-variation in protein levels

Endogenous protein levels as a trade-off between robustness and growth

Robustness against uncorrelated variation

Translational coupling of opposing activities

 Evolutionary selected gene order
 ⇒ Robustness against translational noise

Conserved gene order in chemotaxis operons

Løvdok et al., PLoS Biol., 2009

Coupling of counteracting proteins

	cheA (771)		cheW (1232)		cheR (802)		cheB (656)		che¥ (1376)		cheZ (209)		тср ^ь (6521)	
	left	right	left	right	left	right	left	right	left	right	left	right	left	righ
cheA	1.0	< 1	19.6	3.2	2.7	2.2	14.8	8.6	< 1	7.7	< 1	32.5	< 1	<1
cheW	7.4	37.8	5.9	5.6	20.8	7.2	5.2	1.4	2.3	2.8	0.0	0.0	4.0	3.0
che R	2.3	3.9	4.6	13.7	< 1	< 1	28.6	10.7	1.9	< 1	0.0	0.0	< 1	2.0
cheB	5.2	15.1	< 1	2.7	8.6	26.1	< 1	< 1	7.2	2.3	< 1	0.0	< 1	<1
che Y	15.7	< 1	3.4	2.3	1.4	3.1	4.9	15.0	1.9	1.7	90.0	0.0	< 1	<1
cheZ	8.1	< 1	0.0	0.0	0.0	0.0	0.0	0.0	< 1	9.6	0.0	0.0	< 1	0.0
mcp	10.5	6.4	13.0	16.5	16.8	2.1	1.1	2.3	1.9	1.2	0.0	< 1	5.3	5.1

Co-expression of counteracting proteins enhances robustness

Expression level (AU)

Løvdok et al., J Biotechnol, 2007

Optimization for noise reduction can explain gene order

Simulations including translational noise and translational coupling (Kajetan Bentele and Markus Kollmann)

Thermal robustness of chemotaxis network

Compensation of temperature effects on signalling?

Thermal robustness of steady-state output

Opposing temperature effects on activities of individual receptors

Thermal robustness of steady-state output

Similar temperature effects on kinetics of opposing enzymes

Receptor team

Thermal robustness of adaptation kinetics

Effects on kinetics are compensated by growth-temperature dependent

Receptor team 00 CH3 ∞ -CH P +P Motor

Temperature-dependent translational regulation of CheR

Temperature-dependent enhancement of CheR proteolysis

High temperature disproportionally increases CheR proteolysis

Oleksiuk et al., Cell, 2011

Thermal robustness in biological and man-made systems

Can chemotaxis be improved by experimental microevolution?

Chemotaxis proteins are upregulated in evolved strains

Higher protein expression -> lower noise -> better chemotaxis

Evolution for better chemotaxis is reversible

E. coli chemotaxis as a biosensor

Utilizing bacterial chemotaxis to locate sources of

- Environmental pollutants
- Bacterial biofilms
- Tumors

Equip bacteria with tools for bioremediation

- Pollutant-degrading enzymes
- Anticancer peptides
- Biofilm-dispersing enzymes

Modifying specificity of E. coli chemotaxis

Acknowledgements

Collaborations

Ned Wingreen (Princeton University, USA) Markus Kollmann (University of Düsseldorf) Ady Vaknin (Hebrew University, Israel) Yuhai Tu (IBM Research, USA) Robert Endres (Imperial College, London) Tino Krell (CSIC, Granada) Dieter Heermann (University Heidelberg) Support DFG, NIH, ERC, CHS Foundation, EMBO YIP, MWK BW

Deutsche Forschungsgemeinschaft

DFG

