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a b s t r a c t

The question whether or not “viruses are alive” has caused considerable debate over many years. Yet, the
question is effectively without substance because the answer depends entirely on the definition of life or
the state of “being alive” that is bound to be arbitrary. In contrast, the status of viruses among biological
entities is readily defined within the replicator paradigm. All biological replicators form a continuum
along the selfishness-cooperativity axis, from the completely selfish to fully cooperative forms. Within
this range, typical, lytic viruses represent the selfish extreme whereas temperate viruses and various
mobile elements occupy positions closer to the middle of the range. Selfish replicators not only belong to
the biological realm but are intrinsic to any evolving system of replicators. No such system can evolve
without the emergence of parasites, and moreover, parasites drive the evolution of biological complexity
at multiple levels. The history of life is a story of parasite-host coevolution that includes both the
incessant arms race and various forms of cooperation. All organisms are communities of interacting,
coevolving replicators of different classes. A complete theory of replicator coevolution remains to be
developed, but it appears likely that not only the differentiation between selfish and cooperative rep-
licators but the emergence of the entire range of replication strategies, from selfish to cooperative, is
intrinsic to biological evolution.

� 2016 Published by Elsevier Ltd.
When citing this paper, please use the full journal title Studies in History and Philosophy of Biological and Biomedical Sciences
1. Introduction

“Alcohol-based hand sanitizers kill most types of bacteria, viruses
and fungi in a few seconds” e claims a random ad in a family maga-
zine. Regardless of the technical (in)accuracy of this statement, its
anonymous author(s) has unwittingly answered, in the affirmative, a
question that over several decades had been debated by many sci-
entists: Are viruses alive? The logic here is simple and arguably
undefeatable: you cannot kill something that is not alive. Much the
same argument was made by a science writer in the top scientific
journalNature, on the occasion of the discoveryof virophages, viruses
that parasitize on other, giant viruses of amoeba. The same simple
reasoning applies: if something can be sickened and eventually
brought to death, it surely is alive to beginwith (Pearson, 2008). In an
onin).

V., & Starokadomskyy, P., Are
ry and Philosophy of Biol
influential conceptual paper stimulated by the discovery of giant vi-
ruses and virophages that parasitize on them, Raoult and Forterre
classifyvirusesasoneof the two fundamental categories of organisms
(capsid-encoding organisms, in contrast to the ribosome-encoding
organisms, i.e. cellular life forms), with the obvious implication that
viruses are living beings (Raoult & Forterre, 2008). However, the
opposite viewhas been forcefully propoundedaswell: viruses cannot
be considered alive because of their inability to reproduce without a
cellular host (Lopez-Garcia, 2012; Moreira & Lopez-Garcia, 2009).
Each of these viewpoints certainly reflects distinct, important fea-
tures of viruses: they combine “animate” (reproduction and the
ensuing evolution) and “inanimate” features (lack of autonomy, ex-
istence of an inert state). This dichotomy fuels the perpetual “life vs
non-life” debate among researchers, and even more so among sci-
entific journalists and interested members of the public.

Certainly, the answer to the question “Are viruses alive?” de-
pends on the definition of life or of the “state of being alive”.
viruses alive? The replicator paradigm sheds decisive light on an old
ogical and Biomedical Sciences (2016), http://dx.doi.org/10.1016/
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Although this issue has been pondered at length for centuries, there
is no generally accepted definition of life or “aliveness” (Trifonov,
2012, 2011), and it has been argued that such definitions are
neither feasible nor needed (Bruylants, Bartik, & Reisse, 2010;
Koonin, 2012; Szostak, 2012). Simple examples from different
areas of biology show that a sharp boundary between the living and
non-living (or animate vs inanimate) entities is but an illusion.
Growing bacteria and archaea are certainly alive. However, many if
not most of them enter a dormant (persistent) state under starva-
tion and other forms of stress (Lewis, 2010; Wood, Knabel, & Kwan,
2013). The dormant cells have greatly reduced metabolic activity
and are either able or unable to resume growth and division
depending on the environmental conditions as well as random
factors. Are dormant cells alive or not? Intuitively people are in-
clined to answer “yes”: dormant cells are clearly not dead, because
we can resume their growth under given conditions. But, from a
biochemical standpoint, they dramatically differ from truly alive
cells. Therefore, dormant cells exist in some third, “inert” state that
is neither truly “alive” nor inanimate. Even more dramatically,
Gram-positive bacteria, such as Bacilli and Clostridia, as well as
cyanobacteria, sporulate under adverse conditions (Adams, 2000;
Galperin et al., 2012; Paredes, Alsaker, & Papoutsakis, 2005).
Spores are virtually inert biochemically and again, may or may not
come back to active reproduction. Are they alive or dead? Or do they
represent the third state as well? Thus, the “dead-alive” dichotomy
in the classification of biological entities seems to present unsolv-
able conandrawhereby the borders of life cannot be clearly defined.

Interestingly, the apparent paradoxes with respect to “alive-
ness” are not limited to prokaryotes. For example, micro-animals
tardigrades can survive prolonged incubation in outer space
where no biochemical reactions are possible (Jonsson, Rabbow,
Schill, Harms-Ringdahl, & Rettberg, 2008). However, upon the re-
turn of the satellite to Earth, some of the tardigrades survived and
even were able to produce offspring. Should they be admitted as
“alive”, in the regular sense, during this exposure? Many other
situations in biology can be invoked, where a rational answer to the
question “Is X alive or not?” is out of reach, but those mentioned
above should suffice to make the point that this question generally
does not allow a yes-or-no answer.

In the above discussion, we conflate the issue of the state of
aliveness (whether or not a given object can be considered alive or
not) with that of the category of animate (as opposed to inanimate)
objects (whether or not a given object belongs to the category of
living beings). In general, the two issues are distinct: a dead or-
ganism certainly still belongs within the living category. However,
when it comes to viruses, these different aspects of aliveness are
entangled and are typically discussed jointly. Indeed, viruses can be
viewed as not belonging to the category of living beings because
they are incapable of autonomous reproduction and extracellular
virions are in a dormant (inert) state.

Given that the question on the “aliveness” of a particular class of
entities is generally unanswerable (although for many objects the
answer can be “intuitively obvious”), this appears to be a non-
question. In contrast, in general, it is not difficult to delineate the
range of biological phenomena. Although sometimes we cannot
give a defendable answer to the question “is X alive?”, we argue that
it is always possible to tell whether a particular entity belongs to the
realm of biology. Such an answer can be givenwithin a fundamental
concept that can be denoted the Replicator Paradigm, which we
discuss in the following sections, with an emphasis on viruses.

2. The replicator paradigm

All life that is currently known centers around DNA or RNA
molecules, replicating carriers of genetic information which all
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share fundamentally the same chemical structure. The regular
structure of nucleic acids and the complementarity between purine
and pyrimidine bases make nucleic acids uniquely suited for
replication (and other processes that involve sequence copying,
such as transcription). Replication with fidelity above the error
catastrophe threshold (sometimes called the Eigen threshold) en-
sures inheritance of genetic information and automatically entails
evolution via both selection and random drift (Eigen, 1971; Koonin,
2011; Szathmary & Demeter, 1987). Distinct, partly autonomous
replicating units are known as replicators, a concept and a term that
have been originally proposed by Richard Dawkins (Dawkins, 1982,
1976), and are widely used in theoretical modeling of evolution at
different levels (Godfrey-Smith, 2000; Griesemer, 2000; Hull,
Langman, & Glenn, 2001; Maynard Smith & Szathmary, 1995;
Nanay, 2002). A key facet of the replicator concept as considered
here is the (partial) autonomy with respect to genome replication.

Clearly, replicators are tightly linked to two other major bio-
logical concepts, the replicon and the genome. A replicon is literally
a unit of replication (Jacob, 1993; Jacob & Brenner, 1963). The major
difference from a replicator is that not all replicons possess any
degree of autonomy, and conversely, a replicator does not have to
be a single replicon. The concept of genome is effectively isomor-
phous with the replicator concept, but with a different emphasis: a
genome is the entirety of nucleic acid sequences that are stably
associated with a given replicator (we avoid speaking of “genetic
information” here because parts of the genome often are not
informative in the strict sense). Thus, each genome corresponds to
a replicator that can encompass multiple replicons, e.g. in
eukaryotes.

The (partial) replicative autonomy is the key feature that makes
each replicator a distinct unit of evolutionwhich employs a specific
evolutionary strategy and evolves along a unique trajectory.
Certainly, the autonomy of replicators is never complete, and no
replicator can survive in isolation. The degree of a replicator’s au-
tonomy can be readily measured by the repertoire of the compo-
nents of the replication machinery (enzymes and other proteins
required for replication) that are encoded in the replicator genome,
and by the presence of dedicated replication and/or transposition
signals. Replicators form a continuum along the autonomy axis
although with some degree of arbitrariness, distinct classes ranked
by the level of autonomy can be envisaged (Fig. 1 and Table 1).

At the left end are “quasi-replicators”, such as prokaryotic toxin-
antitoxin (TA) and restriction-modification modules, ORF (Open
Reading Frame)-less Group I self-splicing introns and mini-inteins,
that have neither specific replication or transposition signals nor
genes for any components of the replication machinery. Never-
theless, these entities possess properties that promote their sur-
vival and in some cases survival of other replicators on which they
parasitize. A case in point are the TAmodules that are “addictive” to
prokaryotic cells because when the TA element is lost, the cell is
killed by the toxin (Gerdes, Christensen, & Lobner-Olesen, 2005;
Makarova, Wolf, & Koonin, 2009) (see Table 1). The Group I introns
are ribozymes that catalyze their own excision and splicing of the
flanking exons as well as reverse splicingwhich provides for limited
spread to ectopic sites (Nielsen, 2012; Nielsen & Johansen, 2009).
Mini-inteins are an extremely peculiar variety of parasitic or
commensal quasi-replicators that autocatalytically excise from the
target genes at the protein level while carrying no signals for
replication or transposition (Mills, Johnson, & Perler, 2014;
Starokadomskii, 2007).

Immediately to the right of the quasi-replicators are viroids,
arguably, the simplest bona fide replicators. Viroids are small RNA
molecules of only 400 nucleotides or so that encompass signals for
replication initiation by the host DNA-dependent RNA polymerase
or the RNA-dependent RNA polymerase of the “host” virus but
viruses alive? The replicator paradigm sheds decisive light on an old
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Fig. 1. The diversity of replicators: replicative autonomy vs selfishness-cooperativity. Although the distribution of different groups of replicators in this plane can be viewed as
continuous, four classes are delineated by the criteria of presence or absence of signals for replication and/or transposition and the respective protein machinery. The specific
positions of different replicators on the plane can be defined only qualitatively. The classes of replicators are denoted as follows: C, chromosomes (including organellar genomes); I,
inteins; In, (self-splicing) introns; MI, mini-inteins; O, organellar genomes; P, plasmids; QR, quasi-replicators; RT, retrotransposons; T, (DNA) transposons; V, viruses; Vi, viroids. The
three colors denote virion-less selfish elements, viruses and cellular life forms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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encode no proteins (although some viroids possess ribozyme ac-
tivity that is required for the processing of concatemers formed
during replication) (Diener,1989; Flores et al., 2015). Typical group I
self-splicing introns that encode endonucleases involved in the
intron transposition and inteins can be considered protein-coding
replicators with the lowest degree of autonomy. Both types of el-
ements, in addition to the catalytic moieties required for self-
splicing (at the RNA and protein levels, respectively), encode
homing endonucleases that enable transposition to homologous
and less frequently to ectopic sites (Mills et al., 2014; Nielsen, 2012;
Nielsen & Johansen, 2009; Starokadomskii, 2007).

Chromosomes, the cellular replicators, that encode all proteins
involved in replication and a much greater number of accessory
(with respect to replication) proteins and structural RNAs occupy
the opposite end of the spectrum which corresponds to the
maximum autonomy (Fig. 1). In between are all other diverse
replicators including transposable elements, plasmids and viruses,
as well as organelle genomes from mitochondria and chloroplasts
(Fig. 1). The genomes of these non-cellular replicators span the
range from about one kilobase (small transposons and satellite vi-
ruses) to over two megabase (giant viruses) and widely differ in
terms of the complements of proteins they encode (Koonin & Dolja,
2013, 2014).

The only universal feature shared by all replicators is the pres-
ence of some signal that enables replicative autonomy. That signal
can consist solely of nucleotide sequences that are recognized by
the host replicative apparatus as is the case in many bacteriophages
(e.g. lambda and its numerous relatives in the family Siphoviridae)
that, however, encode a variety of accessory proteins (Kristensen
et al., 2013; Liu, Glazko, & Mushegian, 2006). Many replicators
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with small genomes encode a single enzyme involved in replication
such as the reverse transcriptase of retroelements, the replication
initiator endonuclease-helicase of various rolling circle elements,
and transposases (recombinases) of simple transposable elements
(Koonin & Dolja, 2014; Koonin, Dolja, & Krupovic, 2015; Kristensen
et al., 2013; Piegu, Bire, Arensburger, & Bigot, 2015). Replicators
with larger genomes encode multiple proteins that comprise the
replication machinery that can reach high complexity, e.g. in the
giant viruses of the order “Megavirales” (Colson et al., 2013; Koonin
& Yutin, 2010).

An orthogonal dimension of the replicator universe spans the
range of reproduction strategies (or life styles), from complete
selfishness (associated with parasitism) to full cooperativity (self
reliance) (Fig. 1). Lytic viruses that replicate rapidly and kill the
infected host in the process are the epitome of selfishness whereas
cellular life forms can be considered ultimate cooperators that serve
as self-reliant hosts to the selfish replicators (even though cellular
life forms have evolved multiple layers of defense as discussed
below). All other classes of replicators fall in between these two
extremes. Temperate viruses either reproduce at a limited rate
without killing the host cell or switch between integrated (lyso-
genic) and lytic reproduction strategies (Joh & Weitz, 2011;
Oppenheim, Kobiler, Stavans, Court, & Adhya, 2005). Transposable
elements propagate both within and together with the host
genome at different paces that depend both on the intrinsic rates of
replication and transposition, and by the interaction with the host
defense mechanisms (Piegu et al., 2015; Wicker et al., 2007). Plas-
mids replicate under more or less tight control from the host, with
some reaching high copy number and others represented by a
single or a few copies per cell. Apart from the lytic viruses, all these
viruses alive? The replicator paradigm sheds decisive light on an old
ogical and Biomedical Sciences (2016), http://dx.doi.org/10.1016/



Table 1
The diversity of replicators: genetic elements and their key features.

Genetic elements Definition Comment

Virus(es) Obligate intracellular parasites that infect all cellular life
forms. Viruses possess comparatively small genomes that
consist ease, of single-stranded or double- stranded RNA or
DNA. Most viruses encode at least one protein that forms
the viral capsid that encases the genome.

Viruses are divided into 6 classes that differ in genome
structure and replication-expression strategy:
1. Positive-strand RNA viruses
2. Negative-strand RNA viruses
3. Double-stranded RNA viruses
4. Retro-transcribing viruses
5. Single-stranded DNA viruses
6. Double-stranded DNA viruses.

Lytic virus A virus that lyses (kills) the host cell after replication. Lytic viruses typically cause death of the host or at least
exert major deleterious effect.

Non-lytic virus A virus that does not lyse the host cell. These viruses are transmitted only vertically, via the host
reproduction. Such is the lifestyle of most viruses infecting
fungi.

Temperate (lysogenic) virus A virus that does not immediately lyse the host cell after
infection. The viral genome may remain dormant for many
host generations, depending on external factors, and can
deteriorate.

Temperate viruses, such as numerous tailed phages,
typically do not substantially damage the host unless and
until they are lysogenized.

Bacteriophage A virus that infects bacteria bacteria and either lyses the
bacterial cell or puts the cell into a lysogenic state, becoming
a prophage.

Prophage A latent form of a bacteriophage whereby the viral genome
is integrated into the host chromosome and its expression is
regulated such that no virus is produced and the host cell is
not lysed. Competent prophages can be induced to form
infectious virus and lyse the cell whereas defective
prohages cannot.

Viroid An infectious RNA molecule that encodes no proteins but
recruits the host DNA-dependent RNA polymerase or viral
RNA-dependent RNA polymerase for replication, and causes
disease in plants.

Virion A complete viral particle that consists of RNA or DNA
surrounded by a protein shell and often also a lipid
membrane, and constitutes the infective form of a virus.

Transposable element (transposon) A segment of DNA that is capable of moving into a new
position within the same or another chromosome or
plasmid.

Most transposons encode enzymes, such as recombinases,
transposases and integrases, that actively mediate
transposition.

Plasmid An autonomous genetic unit that does not encode virions
but replicates within a cell (quasi)independent of the
chromosomal DNA.

Most plasmids are double-stranded DNA molecules but
some consist of single-straned DNA or RNA. Plasmids are
vehicles of horizontal gene transfer.

Toxin-antitoxin (TA) system A toxin-antitoxin system is a closely co-regulated system of
two genes, one of which encodes a stable “poison” protein
and another encodes an unstable protein or RNA “antidote”.

The TA systems possess addictive properties: due to the
instability of the antitoxin, only the daughter cells that
inherit the gene (chromosomal or on a plasmid) survive
after cell division. The TA systems regulate the density of
bacterial colonies and apparently mediates programmed
cell death and dormancy induction under stress.

Restriction-modification (RM) module(s) RM systems consist of a modification enzyme that
methylates a specific DNA sequence in a genome and a
restriction endonuclease that cleaves unmethylated DNA.

Conceptually, RM systems are a variety of TA modules.

Rolling circle plasmid Plasmid that replicates through the rolling circle replication
mechanism (a process of unidirectional nucleic acid
replication that can rapidly synthesize multiple copies of
circular molecules of DNA).

Chromosome A double-stranded DNA molecule that encompasses genes,
regulatory elements and other non-coding nucleotide
sequences, and encodes all or most of of the genetic
information in cellular life forms.

Organellar DNA Double-stranded DNAmolecules that represent the genome
of enosymbiotic organelles of eukaryotic cells, namely
mitochondria and chloroplasts (in plants, algae and some
protists).

In principle, organellar DNA is similar to plasmids except for
intracellular compartmentalization.

Group I intron(s) Large self-splicing ribozymes, that catalyze their own
excision from mRNA, tRNA or rRNA precursors.

Most Group I introns encode endonucleases that mediate
the intron transposition and additionally facilitate splicing.

Group II intron(s) Large self-splicing ribozymes, unrelated to Group I introns,
that catalyze their own excision from mRNA precursors.

Most Group II introns encode large proteins containing a
reverse transcriptase domain that mediates the intron
transposition via reverse transcription and additionally
facilitate splicing.

Intein A part of a protein that is able to excise itself and join the
remaining portions (the exteins) with a peptide bond in a
process known as protein splicing.

Typically, inteins do not inactivate host proteins and are not
substantially deleterious to the host. Inteins have been
recruited as key regulators of animal development (the
hedgehog family proteins).
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replicators depend on the long-term survival of their respective
host cells, the ultimate cooperators, and thus combine selfishness
with cooperativity in different proportions as captured in the recent
classification of replicators into 5 classes along the selfishness-
cooperativity axis (Jalasvuori, 2012; Jalasvuori & Koonin, 2015).

Arguably, an inverse relationship between the degree of au-
tonomy and selfishness could be expected: ultimate, most aggres-
sive parasites would shed all the genetic material other than that
required for replication under selection tomaximize the replication
rate whereas parasites involved in complex interactions with the
host would retain a diversified set of genes. Remarkably, however,
there is at best a rough correspondence between autonomy,
complexity and selfishness. For example, lytic viruses and virus-like
agents that replicate rapidly and kill the host cell can have tiny
genomes (as is the case for viroids, RNA bacteriophages or some
ssDNA viruses) or large ones, exceeding in size those of many
cellular life forms (as in giant viruses). Conversely, inteins and self-
splicing introns, which are among the smallest replicators, as well
as megaplasmids with genomes on par with those of the largest
viruses, in most cases are harmless for the host. Thus, the choice of
the strategy of interaction with the host (the degree of selfishness)
appears to be largely uncoupled from the evolution of a replicator’s
genome, and similarly, the degree of autonomy (independence of
the host with respect to replication) is uncoupled from the genetic
complexity. Below, towards the end of the “Ubiquitous ecosystems
of replicators” section, we touch upon the likely causes of this
uncoupling.

2.1. Replicators, their vehicles and resource production

Obviously, replicators cannot reproduce in isolation. They
require resources, such as nucleotides and amino acids, to build
progeny genomes and devices for their reproduction that consist of
proteins and RNA, as well as vehicles that facilitate the acquisition
of the said resources and spread of the progeny (Dawkins, 1982,
1976; Jalasvuori, 2012; Jalasvuori & Koonin, 2015). As with auton-
omy and selfishness (see the preceding section), replicators span
broad ranges of possibilities with respect to resource production
and modification of the host metabolism, and the nature of the
vehicles (Fig. 2). However, unlike replicative autonomy and self-
ishness, the capabilities of replicators with respect to resources and
the nature and complexity of the vehicle are coupled. The repli-
cators are sharply divided into twomajor categories with respect to
resource production: i) producers that make all the resources
required for replication or make some of the resources and actively
import others in an energy-dependent manner, i.e. cellular life
forms, and ii) non-producers that lack most of the biosynthetic and
active transport capabilities, i.e. viruses and other parasitic repli-
cators. The distinction between producers and non-producers re-
flects another type of autonomy that can be denoted “resource
autonomy”. Arguably, as far as the resource autonomy is concerned,
there is a sharp distinction between autonomous cellular life forms
and non-autonomous selfish replicators. Yet, as almost always is
the case in biology, borderline situations exist.

While most of the producers (cellular life forms) make all of the
energy they use and most if not all building blocks, some intra-
cellular bacteria are energy parasites that obtain most if not all of
their ATP from the host (Moran, 2002; Tamas, Klasson, Sandstrom,
& Andersson, 2001). Conversely, some of the non-producers, such
as large viruses, encode some metabolic enzymes, e.g. nucleotide
kinases, that modify the production of building blocks in infected
cells. The largest known viruses, in particular mimiviruses, encode
many such enzymes including multiple components of the trans-
lation system such that multiple synthetic pathways in the infected
cell are modified (Claverie, Abergel, & Ogata, 2009; Yutin, Raoult,
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Koonin, 2013). Among other processes, non-producers can
contribute to energy conversion as is the case with cyanophages
many of which encode cyanobacterial photosystems (Clokie &
Mann, 2006; Thompson et al., 2011). Furthermore, even small
non-producing replicators, such as RNA viruses, affect modifica-
tions of the host cell metabolism and the formation of structures,
such as virus factories, that channel substrates into viral genome
replication (Harak & Lohmann, 2015; Romero-Brey & Bartenschl-
ager, 2014). All the prowess of viruses in the modulation of the host
metabolism notwithstanding, producers and non-producers are
clearly distinct: to the best of our current knowledge, non-
producers never direct the formation of energizable membranes,
extremely rarely encode complete metabolic pathways and never a
complete translation system (Koonin & Dolja, 2013; Raoult &
Forterre, 2008).

With regard to the vehicles, there are three distinct classes of
replicators, those with: i) no vehicles (plasmids, transposons and
other non-viral selfish elements), ii) virus-vehicles (virions), iii)
cell-vehicles (Fig. 2). While the repertoire of genes and signals
involved in replication defines the replicative autonomy of a rep-
licator as discussed above, the type of vehicle determines a
different dimension of autonomy that can be denoted biological or
ecological. The resident replicators of cell-vehicles enjoy full or at
least partial (in the case of parasites, symbionts and organelles)
biological autonomy whereas the vehicle-less replicators and rep-
licators with virus-vehicles depend on the cell-vehicles. Yet, the
degree of autonomy is quite different between the two classes of
parasitic replicators as the virus-vehicles provide for the long-term
survival of extra-cellular virions and effective means for infecting
new cells. Furthermore, the virions of many viruses, such as double-
stranded RNA and negative-strand RNA viruses as well as retrovi-
ruses that package polymerases and other enzymes, are directly
involved in the genome replication.

The fundamental distinction between cell-vehicles and virus-
vehicles treads the same line as the distinction between pro-
ducers and non-producers. The cell vehicles are dynamic, meta-
bolically active entities bounded by energizable membranes and
often capable of active movement whereas the virus vehicles are
essentially inert although many contain enzymes that are activated
within the host cell vehicle. Again, however, the boundary is not
absolutely sharp, and the analogy between virions and bacterial
spores (an inert version of the cell-vehicle) is hard to overlook.

A network of evolutionary relationships exists between repli-
cators without vehicles (plasmids and various mobile elements)
and bona fide viruses (Koonin & Dolja, 2014; Koonin et al., 2015).
Transitions from one type of replicators to another have occurred
on numerous occasions in the course of evolution. In a sharp
contrast, there is no evidence of evolutionary transitions between
cells and viruses. Claims to the contrary that have become rather
popular in the wake of the discovery of giant viruses (Colson, de
Lamballerie, Fournous, & Raoult, 2012; Claverie et al., 2006, 2009;
Raoult et al., 2004) are readily refutable by phylogenomic analysis
(Forterre, Krupovic, & Prangishvili, 2014; Yutin, Wolf, & Koonin,
2014). Indeed, evolutionary reconstructions strongly suggest that
giant viruses have evolved, on multiple, independent occasions,
from smaller, simpler viruses, rather than from a hypothetical
“fourth domain of cellular life”.

Neither is there any convincing evidence of origin of selfish el-
ements from “escaped genes” (i.e., genes becoming autonomous,
selfish replicators) of cellular life forms, notwithstanding the
popularity of this scenario in the early days of virology. On the
contrary, most of the essential viral genes (viral hallmark genes)
have no close homologs among genes of cellular life forms (except
for obvious cases of capture of viral genes by the hosts) and
accordingly are likely to have originated in a primordial, pre-
viruses alive? The replicator paradigm sheds decisive light on an old
ogical and Biomedical Sciences (2016), http://dx.doi.org/10.1016/



Fig. 3. Communities of interacting replicators. The 5 classes of replicators along the
mobility/selfishness axis are denoted according to (Jalasvuori & Koonin, 2015). The
arrows denote both physical fusion (integration) and parasitic, commensal or symbi-
otic relationships between different classes of replicators.

Fig. 2. Replicators, their vehicles and resource production. As in Fig. 1, the specific positions of different groups of replicators along the resource production axis is determined
only qualitatively. However, on the vehicle axis, there are only three distinct positions for the two types of vehicles and the replicators without vehicles. The designations for the
classes of replicators are as in Fig. 1.
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cellular gene pool (E. V. Koonin, 2009; E. V. Koonin & Dolja, 2013; E.
V. Koonin, Senkevich, & Dolja, 2006).

Thus, it is important to note that, whereas replicators form
continua along the axes of selfishness-cooperativity and genome
complexity, there is discontinuity when it comes to the vehicles
and resource production (Fig. 2). The discontinuity extends also to
the major differences in the gene content of cellular genomes and
the genomes of selfish elements. All of the former encode the
complete machineries for translation and for the maintenance of
energizable membranes whereas none of the selfish replicators do
even if genes for some components of these machineries are pre-
sent. Arguably, this gulf between cells and selfish replicators that
reflects fundamentally different survival strategies is the deepest
divide between classes of biological entities (Koonin & Dolja, 2013).

2.2. Ubiquitous ecosystems of replicators

Every biological system, such as a unicellular or multicellular
organism, is a complex, interwoven community of replicators of
different types (Fig. 3). Indeed, all cells, with the possible exception
of highly degraded intracellular parasites, carry multiple trans-
posable elements; many cells also contain various plasmids; and all
or nearly all cellular life forms are frequently attacked by viruses.
The relationships between these diverse replicators span the range
from mutualism to commensalism to antagonism. For example,
plasmids often form a mutualistic link with the resident cellular
replicators (chromosomes) by providing essential metabolic ca-
pacities (Petersen, Frank, Goker, & Pradella, 2013; Stasiak et al.,
2014) or resistance to antibiotics (Andersson & Hughes, 2010).
Prophages that are contained in most prokaryotic genomes can
boost the host immunity to virus superinfection and apparently
might provide other benefits such as stress resistance (Paul, 2008;
Wang et al., 2010). Moreover, a distinct class of defective prophages
known as Gene Transfer Agents serve as dedicated vehicles for gene
transfer between prokaryotes (Lang, Zhaxybayeva, & Beatty, 2012).
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Transposable elements generally should be considered com-
mensals or even aggressive parasites of their cellular hosts. How-
ever, a large body of evidence indicates that sequences from these
elements are routinely recruited as regulatory regions of host genes
(Jordan, Rogozin, Glazko, & Koonin, 2003; Makalowski, 2000;
Rebollo, Romanish, & Mager, 2012). Less frequently but also on
many occasions, entire genes of mobile elements are captured to
function in the host cells (Alzohairy, Gyulai, Jansen, & Bahieldin,
2013; Bowen & Jordan, 2007; Rebollo et al., 2012). The telome-
rase, a key enzyme in the replication of eukaryotic linear chromo-
somes, that was derived from retroelements is one striking
example (Gladyshev & Arkhipova, 2011; Koonin, 2006), and the
much more recent capture of syncytins, essential placental pro-
teins, from retroviruses is another (Dupressoir, Lavialle, &
Heidmann, 2012). Conversely, recruitment of genes from the
viruses alive? The replicator paradigm sheds decisive light on an old
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cellular hosts, when viral genomes randomly captures host DNA
that can be fixed in evolution if selected for a function beneficial to
the virus, is a common route of evolution among viruses and other
selfish replicators (Filee & Chandler, 2010; Filee, Pouget, & Chandler,
2008; Yutin & Koonin, 2012) (see more below on gene exchange
between different classes of replicators).

Beyond gene exchange and recruitment, fusion of replicators (or
more precisely replicons, for this occasion) is a ubiquitous phe-
nomenon in all organisms (McGeoch & Bell, 2008). Obviously, this is
an integral feature of the life cycles of transposable elements.
Numerous integrated elements lose their autonomy and degrade,
ultimately beyond recognition, to become parts of the host ge-
nomes. This process is ubiquitous across the spectrum of cellular life
but was particularly massive in the evolution of animals and plants
in which the content of transposon-derived sequences can exceed
90% of the genome (Diez, Meca, Tenaillon, & Gaut, 2014; Kidwell,
2002). Although not reaching such extravagant heights, ameliora-
tion of both transposable elements and proviruses is common also
in bacteria and archaea. Moreover, analysis of archaeal genomes
reveals multiple fossils of plasmids suggesting that plasmid accre-
tion is a major path of genome evolution (Iyer, Makarova, Koonin, &
Aravind, 2004; McGeoch & Bell, 2008). Even for lytic viruses, data
are accumulating on frequent integration into the host genomes,
even if this process is spurious with respect to virus reproduction
(Chiba et al., 2011; Koonin, 2010; Liu et al., 2010). A striking example
of fusion between distinct parasitic replicators are the IStronswhich
are hybrids between Group I self-splicing introns and insertion
sequences, and combine properties of introns and DNA transposons
(Tourasse, Stabell, & Kolsto, 2014). Similarly, large DNAviruses often
harbor self-splicing introns and serve as vehicles for their dissem-
ination (Edgell, Chalamcharla, & Belfort, 2011; Yoosuf et al., 2012).
Apparently, genome fusion and integration along with interactions
that do not involve physical joining connect all classes of replicators
into a single network (Fig. 3).

The evolution of life is often described as an incessant arms race
between hosts and parasites (Forterre & Prangishvili, 2009, 2013;
Koonin & Dolja, 2013; Koonin & Krupovic, 2015b; Koonin & Wolf,
2012). Indeed, emergence of selfish, parasitic elements is inevi-
table in even the simplest replicator systems (Konnyu, Czaran, &
Szathmary, 2008; Szathmary & Maynard Smith, 1997; Takeuchi &
Hogeweg, 2007, 2012; Takeuchi, Hogeweg, & Koonin, 2011). Prob-
ably, a more accurate statement is that the entire history of life is a
story of host-parasite coevolution. Arms race is a major aspect of
this coevolution that, however, involves also multiple forms of
cooperation, to different degrees for different classes of replicators
(Dupre & O’Malley, 2009). This cooperation is manifested not only
in gene exchange as outlined above but also in self-constraining
strategies of numerous selfish replicators.

The arms race promotes evolution of multiple, intricate defense
systems in all cellular life forms along with counter-defense systems
in selfish replicators.Defense of cellular life forms typically consists of
multiple layers including resistance mechanisms (such as rapid
evolution of virus receptors), innate and often also adaptive immu-
nity, and programmed cell death (Flajnik & Du Pasquier, 2004;
Makarova, Anantharaman, Aravind, & Koonin, 2012, 2013; Rimer,
Cohen, & Friedman, 2014). Strikingly, adaptive immunity systems in
archaea andbacteria (the CRISPR-Cas systems) and in animals appear
to have evolved through recruitment of different transposable ele-
ments (Koonin&Krupovic, 2015a), and a similar pathof evolution led
to the origin of an innate immunity system in ciliates (Swart &
Nowacki, 2015). The finding that (at least) three distinct classes of
transposons gave rise to three very different immunity systems im-
plies a general principlewhereby selfish replicators that are naturally
evolved genome rearrangement devices are recruited for those de-
fense mechanisms that involve such rearrangements (Koonin &
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Krupovic, 2015b). This principle extends even further in that many
defense mechanisms, such as restriction-modification and toxins-
antitoxins in prokaryotes, are “guns for hire” that are employed
either for defense or for counter-defense by different classes of rep-
licators (Koonin & Krupovic, 2015b). These ”molecular weapons” are
embodied in small, compact genetic units that possess a degree of
selfishness and could be viewed as “quasi-replicators” because they
lack replicative autonomy and hitchhike on replicators of different
classes (Inglis, Bayramoglu, Gillor, & Ackermann, 2013; Kobayashi,
2001; Van Melderen & Saavedra De Bast, 2009). However, such
“weapon units” possess addictive properties that allow them to
promote their own survival and propagation, regardless of whether
they provide any benefits to the host.

Counter-defense, i.e. adaptations of selfish replicators that
enable them to escape and/or suppress the defense mechanisms of
their hosts, varies dramatically among selfish replicators but
virtually all of them encode some functions involved in inhibition of
cell defense, such as inhibitors of programmed cell death or sup-
pressors of the RNA interference response (Agol & Gmyl, 2010;
Gewurz, Gaudet, Tortorella, Wang, & Ploegh, 2001; Koonin &
Krupovic, 2015b; Wu, Wang, & Ding, 2010). Larger selfish repli-
cators, such as viruses with large genomes, encompass numerous
genes that encode multiple counter-defense mechanisms. Many if
notmost components of antidefense systems are recruited from the
host defense although not all of them possess quasi-replicator
properties (Gewurz et al., 2001; Ploegh, 1998; Vossen,
Westerhout, Soderberg-Naucler, & Wiertz, 2002).

We have discussed several axes on which replicators occupy
different positions. Yet another one is the axis of replication effi-
ciency vs environmental adaptation. Any replicator faces the
fundamental trade-off between maximizing the rate of replication
as such and evolving adaptations to the respective environment
that provide for maximization of the resource supply and genome
protection. In the case of selfish replicators, the adaptations largely
include counter-defense systems. Replicators are extremely widely
spread along this axis. The trade-off effectively amounts to the
well-known dichotomy, in ecology and evolution, between r and K
strategy where the r strategy involves maximization of the repro-
duction rate whereas the K strategy entails elaborate adaptation
(Hastings & Caswell, 1979; Molenaar, van Berlo, de Ridder, &
Teusink, 2009). Generally, the r strategy wins in unstable, shifting
environments that, however, provide plentiful resources for short
time intervals, whereas the K strategy is advantageous in stable
environment with limited resources (Ponge, 2013). Understanding
in more specific terms how the fundamental choice between
different evolutionary strategies is made, is key to the study of
replicator coevolution and remains a major open research problem.

The coevolution of selfish and cooperative replicators appears to
be a powerful driving force of evolution. Mathematical models of
coevolution convincingly show that, in well-mixed populations of
hosts, parasites cause collapse of the entire host-parasite system.
Stable coevolution is possible only in structured populations
(Takeuchi & Hogeweg, 2012, 2007; Takeuchi et al., 2011). Thus,
selfish replicators promote evolution of complexity of the entire
replicator ecosystem. More specifically, such major evolutionary
transitions as the advent of DNA as a dedicated information storage
device (Takeuchi et al., 2011) and the origin of multicellular life
forms could have been promoted by the parasite-host arms race, in
particular, through the evolution of programmed cell death as a
defense (Iranzo, Lobkovsky, Wolf, & Koonin, 2014).

3. Concluding remarks

The question whether or not “viruses are alive” appears to be
effectively meaningless because the positive or negative answer
viruses alive? The replicator paradigm sheds decisive light on an old
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fully depends on the definition of life or the state of “being alive”,
and any such definition is bound to be arbitrary. Worse, any answer
to this question does not seem to lead to any constructive de-
velopments. In contrast, the status of viruses in the realm of biology
is naturally defined within the framework of the replicator para-
digm. In the continuum of replicators along the selfishness-
cooperativity axis, lytic viruses represent the selfish extreme
whereas other parasitic replicators span a broad range. Selfish rep-
licators are not only a part of the biological world but constitute an
intrinsic, central part of that world. No replicator system can evolve
without the emergence of parasites, and parasitic replicators drive
the evolution of complexity at more than one level. The entire his-
tory of life is a story of parasite-host coevolution that includes both
the inevitable arms race and various forms of cooperation. All
evolving organisms are communities of interacting replicators of
different classes, from the most selfish to the fully cooperative ones.
Although a formal theory of replicator coevolution remains to be
developed, an attractive hypothesis is that not only the split between
selfish and cooperative replicators but the formation of the entire
range of replication strategies is intrinsic to biological evolution.

Thus, unlike the discussions of “aliveness” of viruses, the rep-
licator paradigm is constructive in that it provides the conceptual
framework for theoretical and experimental study of the in-
teractionswithin the replicator community that are among the key
drivers of all evolution. One could plausibly argue that life cannot
be reduced to replicators, and conversely, that replicators are not
confined to the realm of biology. The first proposition is trivially
true: indeed, production of energy and acquisition of resources is as
intrinsic to life as replication (Dupre & O’Malley, 2009). Indeed, the
complementarity of replication and metabolism (broadly defined
to include energy production) is the biological manisfestation of
the dualism of information (entropy) and energy, as beautifully
explained by Schroedinger in his classic book (Schroedinger, 2003).
Wewill not dwell here on the origin of life dilemma: replication or
metabolism first? Different approaches are possible, the one that
postulates joint origin of both groups of phenomena probably be-
ing the most coherent. The second proposition is more controver-
sial. Typically, when speaking of non-biological replicators, one
wouldmentionmemes (units of cultural inheritance introduced by
Dawkins (Dawkins, 1976) and computer viruses along with various
computationalmodels of “artifical life”.Whether or notmemes can
be legitimately considered true replicators, remains a matter of
debate (Blackmore, 2000) whereas replication of computer viruses
(and especially digital “genomes” specifically designed for that
purpose) appears obvious. We will not discuss these alleged non-
biological replicators in any detail but will make two salient re-
marks. First, these replicators are not biological entities per se but
clearly are generated by biological systems. We are unaware of any
plausible candidates for replicators of strictly non-biological origin.
Second, and even more notable, these non-biological replicators
clearly are virus-like elements endowed with different degrees of
selfishness (much like the biological replicators described above;
see Figs. 1 and 2) that exploit vehicles provided by other, more
cooperative, biological replicators.

Replicators possesss the intrinsic property of evolvability, and it
might be tempting to argue that evolvability rather than replication
is the key feature of biological systems. We maintain, however, that
this is not the case, and instead, evolution itself is an epiphenom-
enon of replication: selection, drift and parasite formation neces-
sarily ensue as soon as replication with sufficient fidelity is
established (Eigen,1971; Koonin, 2011; Takeuchi & Hogeweg, 2012).

To conclude, we believe that the replicator paradigm is truly
central to biology as both a conceptual framework and a research
programme. Among other major issues, it settles the status of vi-
ruses in the biological world.
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